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SUMMARY

In this paper, the interaction fluid–rigid body is analysed by a finite element procedure that incorporates
the arbitrary Lagrangian–Eulerian (ALE) method into a well-known two-step projection scheme. The
flow is assumed to be two-dimensional, incompressible and viscous, with no turbulence models being
included. The flow past a circular cylinder at Re=200 is first analysed, for fixed and oscillating
conditions. The dependence of lock-in upon the shift between the mechanical and the Strouhal
frequencies, for a given amplitude of forced vibration, is illustrated. The aerodynamic forces and the
wake geometry are compared for locked-in conditions with different driving frequencies. The behaviour
of a rectangular cylinder (B/D=4) at Re=500 (based on height D) is also analysed. The flutter
derivatives associated with aerodynamic damping (H1* and A2* in Scanlan’s notation) are evaluated by the
free oscillation method for several values of reduced flow speed above the Strouhal one (namely for
35U*58). Torsional flutter was attained at U*]5, with all the other situations showing stable
characteristics. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The fluid–structure interaction is an important issue in civil engineering. The design of
long-span bridges, high rise buildings, high towers and large domes, for instance, must
consider the wind-induced oscillations and the aerodynamic stability has to be properly
assured.

In terms of CFD, the arbitrary Lagrangian–Eulerian (ALE) method is a suitable procedure
for the analysis of fluid–body interaction. It combines the classical Lagrangian and Eulerian
viewpoints and was introduced by Hirt et al. [1] in the domain of finite differences, being later
developed in the finite element context [2–7]. Besides ALE, other methods can be found in the
literature for the analysis of fluid–body interactions, such as those reported in References
[8–12].

A CFD program named ESBFI has been developed by the authors for the direct resolution
of the Navier–Stokes equations [13]. The ALE method was incorporated into the semi-implicit
two-step projection scheme presented by Zienkiewicz et al. [14]. In this procedure, the
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Taylor–Galerkin method proposed by Donea [15] is applied for the resolution of the
intermediate step, and the pressure is evaluated in the projection step by solving a consistent
discrete analogue of the Poisson equation for the pressure field.

The immersed bodies are assumed to be rigid and to oscillate with three mechanically
uncoupled degrees of freedom. The interaction fluid–moving body is considered through the
ALE description, following the format presented by Nomura and Hughes [4]. The spatial
domain is divided in two adjacent regions: a fixed outer one, in which the Eulerian description
is used, and a moving inner region surrounding the body, in which a compatible mesh velocity
field is specified.

The algorithm is applied to the analysis of a circular cylinder at Re=200, for fixed and
oscillating conditions. The results illustrate the dependence of lock-in upon the shift between
the mechanical and the Strouhal frequencies, for a peak-to-peak amplitude of forced vibration
equal to 20% of the cylinder diameter. The effects of the driving frequency on the aerodynamic
forces and on the wake geometry are also illustrated.

The behaviour of a rectangular cylinder with a side ratio depth/height (B/D) equal to 4, at
a Reynolds number of 500 (Re=UD/n), is also analysed. The expected occurrence of torsional
flutter for reduced flow speeds U* greater than about 4 (where U*=U/( fm ·B) and fm is the
natural frequency of vibration of the cylinder) was clearly attained in the CFD results.

The evaluation of the flutter derivatives is fundamental for the analysis of the aerodynamic
stability of structures, namely for bridge decks. The flutter derivatives of the rectangular
section (B/D=4) that are associated with aerodynamic damping (H1* and A2* in Scanlan’s
notation) have been evaluated by a CFD simulation of the free oscillation method (FOM). In
the past, wind tunnel testing was the only method available to designers, but the results
obtained (although still limited to two-dimensional analysis and to low Re, in terms of civil
engineering structures) strengthen the belief that CFD will play an important role in the future
as an auxiliary tool to civil engineers, particularly in the early stages of design. The geometric
definition of the deck of Vasco da Gama Bridge, a cable stayed bridge recently built in
Portugal, illustrates the use of CFD as a tool to improve the aerodynamic behavior of
structures [16].

2. KINEMATICAL THEORY BEHIND THE ALE DESCRIPTION

Three different domains in space are defined in the ALE description: the spatial domain, the
material domain and the referential domain. The spatial domain, Vx(t), is the one in which the
fluid flow is currently analysed (at a generic instant t); the current position of the fluid
particles are defined by the so called spatial co-ordinates (xi). The material domain, VX(t), is
defined by the initial position of the fluid particles that constitute Vx at time t. The third
domain involved in the ALE description is the referential domain (Vx), which is fixed
throughout the analysis. For finite element algorithms, Vx is simply a moving mesh and Vx a
reference mesh, which may be turned into Vx through an adequate mapping.

The velocity vector of a fluid particle (ui) and the mesh velocity (ûi) correspond respectively
to the material and referential time derivatives of the spatial co-ordinates, i.e.

ui=
(xi

(t
)
Xi=c te

, (1)

ûi=
(xi

(t
)
xi=c te

. (2)
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In the Eulerian description Vx=Vx and ûi=0; the spatial domain is fixed and each
computational element is crossed by the flow. In the Lagrangian description VX=Vx and
ui= ûi ; as each element always contains the same fluid particles severe mesh distortions may
arise (for instance due to vortex shedding) [3,4].

In the ALE description the nodes of the mesh are free to move independently of the flow,
and the mesh distortions can thus be limited. It is a suitable method for the analysis of flow
around oscillating rigid bodies, as a purely Eulerian description may be considered in a fixed
region of the spatial domain far enough from the immersed body while the compatibility and
equilibrium conditions at the moving body–fluid interface are adequately simulated by use of
a purely Lagrangian description. A mixed description is used in a transition region, in which
a compatible mesh velocity field must be specified.

3. NUMERICAL SOLUTION OF THE NS EQUATIONS

The Navier–Stokes (NS) equations can be written in the following convective–diffusion
format (where i=1, 2 and the sum convention on repeated indices is used):

(U
(t

+
(Fi

(xi

+
(Gi

(xi

=Q. (3)

In the case of two-dimensional incompressible flow, the vectors introduced above are defined
by

U=r
�u1

u2

n
=rV, Fi=

(

(xi

�ru1(ui− ûi)+Pd1i

ru2(ui− ûi)+Pd2i

n
, Gi=

�−t1i

−t2i

n
, Q=r

�b1

b2

n
,

(4)

where r is the fluid density, P is the pressure, tij are the viscous stresses, bi are the components
of gravitational acceleration and dij is the Kronecker symbol. The boundary conditions may
consist on prescribed velocities (ui= ũi) on a region Gu and on prescribed surface tractions
(ti= t0 i) on a non-overlapping region Gt.

The solution of the NS equations is accomplished in the present algorithm by means of the
two-step projection semi-implicit scheme presented by Zienkiewicz et al. [14]. The system
equation (3) is split into

(

(t
DU*+

(Fi*
(xi

+
(Gi

(xi

=Q* (intermediate step), (5a)

(

(t
DU**+

(Fi**
(xi

=0 (projection step), (5b)

and the integration in time (subscript n refers to the nth time step) is then performed via

Un+1=Un+ [DU* ]n+ [DU** ]n. (6)

The expressions (5a) and (5b) are rewritten in the following explicit form, which also defines
the vectors introduced above with superscripts (*) and (**),

(

(t
�D(ru1)*
D(ru2)*

n
+
(

(xi

�ru1(ui− ûi)
ru2(ui− ûi)

n
+
(

(xi

�−t1i

−t2i

n
=
�rb1−(P/(x1

rb2−(P/(x2

n
, (7a)
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(

(t
�D(ru1)**
D(ru2)**

n
+
(

(xi

�DPd1i

DPd2i

n
=
� ·

·
n

. (7b)

The increment [DU*]n between any consecutive instants is obtained in the intermediate step in
order to satisfy equilibrium, assuming that the pressure field [P]n evaluated so far is constant
during the time step Dt ; the increment [DU**]n needed to guarantee the continuity condition
is then evaluated in the projection step, as well as the corresponding pressure variation [DP]n,
which keeps the equilibrium condition satisfied.

The intermediate step is solved by the following explicit method, which is derived from the
Taylor–Galerkin method (TGM) proposed by Donea [15]:

[DU* ]n=Dt
!

−
(Fi*
(xi

−
(Gi

(xi

+Q*+
Dt
2
� (
(xi

�
Ai

�
Aj

(U*
(xj

−Q*
��

+
(Q*
(t

n"
n

. (8)

The Jacobian matrices Ai (note that i=1, 2 and that Aj has been introduced for a sum in indice
j ) are defined by

Ai=
(Fi*
(U

U generic term (k, m) of matrix Ai, (Aj)km=
((Fi*)k

(Um

. (9)

The incorporation of the ALE method into this two-step scheme, in conjunction with the
transfer of the pressure terms to vector Q* (Equation (5a)), leads to the following simple result
for the Jacobian matrices

A1=
�2u1− û1

u2

0
u1− û1

n
, A2=

�u2− û2

0
u1

2u2− û2

n
. (10)

Besides those contained in ((Gi/(xi), the TGM leads to additional second-order spatial
derivatives of the velocity field, which may be interpreted as additional viscous terms. In fact,
this procedure is analogous to the upwind schemes of the Petrov–Galerkin streamline
balancing type [17–19].

Regarding the projection step, the following implicit procedure (g]0.5) is adopted:

r [DV** ]n+gDt9[DP ]n=0, (11)

where 9= [(/(x1, (/(x2]T. The continuity condition (9TV=0) is imposed by means of

9T[V+gDV*+gDV** ]n=0, (12)

which in conjunction with (11), leads to the following Poisson equation for the pressures:

g2Dt92[DP ]n=r9T[V+gDV* ]n. (13)

The application of the standard Bubnov–Galerkin weighted residual method gives rise to the
expressions given below, where M is the mass matrix, K the viscosity matrix, C the gradient
matrix, S the convection matrix, H the Laplacian matrix and F the force vector, and K*, C*,
J* and F* correspond to upwind terms. The definitions of these matrices are given in
Appendix A.

(1) Intermediate step

M[DVe* ]n= [Y* ]n, with (14)

[Y* ]n=Dt
�

F+CPe−
�

K+S+
Dt
2

K*
�

Ve+
Dt
2

(F*+J*−C*Pe)
n

n

. (15)
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(2) Projection step

H[DPe ]n= −
r

Dtg2 CT[Ve+g(DVe*)]n, (16)

M[DVe** ]n=gDtC[DPe ]n. (17)

The Laplacian matrix H takes its name because it may be interpreted as a discrete counterpart
of the Laplacian operator, by analogy with the Poisson equation that must be satisfied by the
pressure field in incompressible flows [20]. The matrix K has an uncoupled format (in terms of
u1 and u2) as a result of applying the weighted residual formulation to the NS equations with
the diffusion term expressed by 92ui rather than in the stress–divergence form [20]. The
corresponding natural boundary conditions give rise to surface tractions defined by

ti=
�

m
(ui

(xj

−Pdij
n

nj= t0 i on Gt (outlet boundary of the spatial domain), (18)

where m is the fluid viscosity and ni are the components of the unit outward vector normal to
the boundary. Although these tractions do not correspond to real physical stresses, this
boundary condition is rather efficient for the simulation of outflow surfaces where the mean
velocity is normal to the boundary [20–22].

The prescribed values t0 i are evaluated by assuming a zero gradient of boundary tractions
[14,17,23]. Regarding the prescribed flow velocities, it is convenient to consider two distinct
parts in boundary Gu—the contour Gc of the immersed body, in which the no-slip condition
is imposed, and all the remaining portion of Gu, which is denoted by Gg and consists on the
inlet and side boundaries of the domain. Tow-tank conditions are imposed on Gg, i.e. ũ1=U
(the free flow velocity, which is assumed to be constant along time) and ũ2=0.

The values ũi and t0 i are imposed at the intermediate step of the algorithm. At the projection
step, both the normal and tangential velocities (DV**) are kept at zero on every point of Gu

(see Gresho [22] for details about this subject). Even if the prescribed velocities are time-vari-
able (such as on the surface Gc of moving bodies, by virtue of the no-slip condition), these
velocities are fully imposed at the determination of DV*.

With respect to the boundary conditions on the pressure field, the equation system (16)
presumes that the following conditions are satisfied [14]:

DP=0 on Gt,
((DP)
(n

=0 on Gu. (19a, b)

The first one is legitimate if the outlet boundary (i.e. Gt) is far enough from the immersed
bodies [3,24]. It implies that every change on the imposed tractions, during a CFD experiment,
must be fully counter-reacted by the viscous component (m (ui/(n). The second condition
results from (6b) and is a boundary condition usually imposed on Gu [3,14,24–26].

The sum of Equations (14) and (17) gives

M[DVe ]n=Dt [Z*+C(Pe+gDPe)]n, (20)

where

[Z* ]n=
1
Dt

[Y* ]n− [CPe ]n. (21)

In the analysis of flows around moving bodies, the matricial blocks corresponding to the ALE
portion of the mesh (the region VL defined in Section 4) are time-dependent, as the nodal
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co-ordinates are constantly changing. For these conditions, the following procedure, which
follows from (20) with g=1.0, has been adopted [13]:

Mn+1[Ve ]n+1=Mn [Ve ]n+Dt{[Z* ]n+Cn [Pe ]n+Cn+1[DPe ]n}

=Mn [Ve ]n+ [Y* ]n+DtCn+1[DPe ]n. (22)

The results presented in this paper have been obtained with curved isoparametric finite
elements of type V9/P4, i.e. biquadratic interpolation for velocity (nine nodes) and bilinear for
pressure (four nodes at the vertices). The momentum equations are solved simultaneously and
the lumped form of the mass matrix M has been considered; this procedure shows better
stability limits than the use of the consistent mass matrix [17] and the inaccuracies are
presumed to be small, as reported by Gresho [21] for elements with biquadratic interpolation
for velocity.

4. INTERACTION FLUID–RIGID BODY

The type of spatial domain Vx(t) considered in the analysis is depicted in Figure 1. It is divided
in two parts: an inner region VL(t) with a moving mesh surrounding the immersed body, and
a fixed outer region VE in which a purely Eulerian description is considered. The interface
between both domains is denoted by GEL.

A purely Lagrangian description is used on Gc(t), with the no-slip condition being imposed
by

ui= ûi= ũi on Gc(t). (23)

A rigid immersed body is depicted in Figure 2. The origin of the spatial co-ordinates is located
at the centre of gravity of the body (G). The displacements of point G are stored on vector
q= [X, Y, a ]T, and the forces induced by the fluid on the body (drag, lift and pitching moment)
are stored on vector X= [FD, FL, M ]T. These forces are evaluated by

FD=
&

Gc

t1 dG, FL=
&

Gc

t2 dG, M=
&

Gc

(t2x1− t1x2) dG, (24)

with

Figure 1. Schematic illustration of the spatial domain.
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Figure 2. Displacements and forces on the immersed body.

ti= (tij−Pdij)nj U Í
Ã

Ã

Á

Ä

t1=m
�

2
(u1

(x1

n1+
�(u1

(x2

+
(u2

(x1

�
n2
n

−Pn1

t2=m
��(u1

(x2

+
(u2

(x1

�
n1+2

(u2

(x2

n2
n

−Pn2

. (25)

Taking D as a characteristic dimension of the body, the force coefficients are defined by

CD(t)=
FD(t)

0.5rU2D
, CL(t)=

FL(t)
0.5rU2D

, CM(t)=
M(t)

0.5rU2D2 . (26)

For a generic point C of the contour Gc(t), with initial co-ordinates x̄= [x̄1
c, x̄2

c]T, the relation
between its velocity vector [u1

c, u2
c]T and q; (the dot indicates (/(t) is as follows [4]:

�u1
c

u2
c

n
=
�1

0
0
1

−L2
c

L1
c

nÃÆ
È

X:
Y:
a;
Ã
Ç

É
=Tcq; , (27)

being Tc the transformation matrix for point C and!L1
c = x̄1

c cos(a)− x̄2
c sin(a)

L2
c = x̄1

c sin(a)+ x̄2
c cos(a)

. (28)

If the velocities of all the points of Gc(t) are stored in a vector Vc, then a global transformation
matrix T may be defined such that

Vc=Tq; on Gc(t). (29)

The mesh velocity field (V. ) may be arbitrarily specified in VL(t); it only has to satisfy the
no-slip condition at the body surface and must be zero at the interface GEL, i.e.!V. =Vc

V. =0
on Gc(t)
on GEL

. (30)

For each point C of VL(t) the mesh velocity may thus be specified as a percentage of the
velocity that the point would present if it were rigidly linked to the body, i.e.

�û1
c

û2
c

n
=k c�1

0
0
1

−L2
c

L1
c

nÃÆ
È

X:
Y:
a;
Ã
Ç

É
, (31)
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with k c=1 on Gc(t) and k c=0 on GEL. The simple body geometries that are analysed in the
present paper (circular and rectangular cylinders) have enabled the adoption of the same
criteria used by Nomura and Hughes [4]—the coefficient k c is linearly distributed from 0 to
1 along the line that contains G and each desired node C. This criteria may not be adequate
for more complex geometries, but k c may then be evaluated by solving the Laplace equation
92(k c)=0 on VL(t=0) with the boundary conditions stated above.

The rigid body is assumed to behave as a linear oscillator with three mechanically uncoupled
degrees of freedom (two linear displacements and rotation), each one characterised by constant
mass, viscous damping and stiffness coefficients (denoted by mi, ci and ki respectively, where
subscript i corresponds to either X, Y or a).

The step-by-step integration of the equations of motion is performed by the linear accelera-
tion method (LAM). The initial position and velocity of the rigid body must be supplied for
the start-up of the oscillation process, and the components of the acceleration vector are
evaluated at each step by imposing the condition of dynamic equilibrium

q̈i(t)=
1
mi

[Xi(t)−kiqi(t)−ciq; i(t)]. (32)

5. BASIC EQUATIONS FOR FLUTTER ANALYSIS

In civil engineering, aerodynamic flutter is a major concern on the design of some wind-sensi-
tive structures. Torsional flutter is particularly important in the case of bridge decks, as it is
the type of aerodynamic instability more often encountered in wind tunnel tests. The
well-known disaster of Tacoma Bridge was attributed to this phenomena.

In its simplest form, the flutter analysis of a cylinder considers only the transverse and the
torsional motions. Flutter may then occur with only one degree of freedom being excited or
with the simultaneous participation of both. This latter situation is typical of airfoils and is
usually termed ‘classical flutter’; the former may be of the heaving type (usually termed
‘galloping’) or of the rotational type, and in both cases the occurrence of flutter corresponds
to negative global damping for the corresponding degree of freedom.

Consider a cylinder immersed in a smooth flow with uniform free velocity U, as shown in
Figure 3. The equations of dynamic equilibrium between the internal forces and the aerody-
namic ones (lift FL and torsional moment M) are

m [Y8 (t)+2jmyvyY: (t)+vmy
2 Y(t)]=FL(t), (33a)

I [ä(t)+2jmavaa; (t)+vma
2 a(t)]=M(t), (33b)

Figure 3. Schematic illustration of an oscillating rectangular cylinder.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 897–919 (1999)
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where jmy and jma are the ratio-to-critical structural dampings, vmy and vma are the structural
radian frequencies of oscillation (vm=2p ·fm), m is the mass of the cylinder per unit length
and I is the sectional mass moment of inertia about the rotation axis.

In civil engineering practice, it is usual to adopt Scanlan’s notation in the analysis of
aerodynamic flutter. The aerodynamic forces are assumed to depend linearly upon the
displacements and velocities of oscillation through [27]:

FL(t)=
rU2

2
B
�

KH1*(K)
Y: (t)

U
+KH2*(K)

Ba; (t)
U

+K2H3*(K)a(t)+K2H4*(K)
Y(t)

B
n

,

M(t)=
rU2

2
B2�KA1*(K)

Y: (t)
U

+KA2*(K)
Ba; (t)

U
+K2A3*(K)a(t)+K2A4*(K)

Y(t)
B

n
, (34)

where the coefficients Ai* and Hi* (i=1, . . . , 4) are called flutter derivatives and K=2pfB/U
is the so-called reduced frequency (in this definition, f is the frequency of oscillation). The
flutter derivatives H1* and A2* are related to aerodynamic damping, while the derivatives H4*
and A3* reflect aerodynamic stiffness. The other derivatives play the role of cross-terms
between the two degrees of freedom.

The flutter derivatives may be evaluated under forced or free oscillation conditions. In the
FOM, the flutter derivatives are evaluated by analysing the motion that is observed after
releasing the cylinder from an initial non-zero amplitude. If the rotation is fixed, for example,
the net frequency and damping of the transverse oscillations enable to extract H1* and H4*;
similarly, the fixing of the transverse motion leads to A2* and A3* once the net frequency and
damping of the torsional oscillations are evaluated.

In fact, under these experimental conditions, Equations (33) and (34) lead to the following
expressions, where the subscript E refers to the values (either of frequency or of damping) that
are effectively observed in the tests,

H1*(K)=
4m
rB2

�
jmy

vmy

vEy

−jEy
n

, H4*(K)=
2m
rB2

��vmy

vEy

�2

−1
n

, (35)

A2*(K)=
4I

rB4

�
jma

vma

vEa

−jEa

n
, A3*(K)=

2I
rB4

��vma

vEa

�2

−1
n

. (36)

Powerful system identification techniques have been developed for the extraction of the
complete set of flutter derivatives. The simple technique described above is used in this paper
for the sake of illustration of the CFD potential to assess aerodynamic stability. To this end,
only the derivatives associated with one degree of freedom flutter are considered, namely H1*
(galloping) and A2* (torsional flutter).

6. EXAMPLE 1: CIRCULAR CYLINDER AT Re=200

The flow past a circular cylinder at Re=200 is first considered for both fixed and forced
oscillating conditions. The nature of the flow in forced oscillation conditions at such Re is
essentially two dimensional, as the flow is driven by the oscillations of the cylinder [12].
However, for fixed conditions at Re=200, the flow in the wake is periodic but in fact it is
three-dimensional, as a result of a secondary instability in the two-dimensional vortex street
[28]. These three-dimensional effects are not captured in the present analysis.

An overall view of the computational domain is shown in Figure 4. The outflow length is
28D and the width of the domain is 16D. The finite element mesh contains 11958 nodes and

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 897–919 (1999)
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Figure 4. Lay-out of the finite element mesh.

2930 elements, and the Lagrangian region is restricted to a square area centred with the
cylinder at rest, with side equal to 8D. This region contains 25 strips with 64 elements, each
one with the minimum radial dimension (the width of the elements that touch the cylinder)
being equal to 0.018D. The dimension of the downstream elements in the direction of the free
flow is constant and equal to 0.6D. This dimension results in about eight elements per the
expected wavelength of the vortices shed in stationary conditions, which is about 5D.

The computations were performed on an IBM-RISC 6000/595, with a non-dimensional time
interval Dt*=Dt ·U/D=0.001 until step 1000 and Dt*=0.002 henceforward. The CPU time
per step was 0.40s/0.98s in the simulation of fixed and of oscillating conditions respectively.

6.1. Fixed situation

The frequency of vortex shedding is given by fs= (U/D)St, where St is the Strouhal
number. If for a given frequency f (expressed in cycles per unit of time) a corresponding
reduced frequency F is defined by F= ( fD/U), the Strouhal number may be viewed as the
reduced frequency of vortex shedding (i.e. St=Fs).

The numerical simulation of vortex shedding may be accomplished by two distinct proce-
dures: by the breakdown of symmetry as a result of the accumulation of round-off errors or
by introducing slight perturbations in the numerical process in order to hasten the phenomena.
The influence of round-off errors did not prove to be effective and so the authors employed
a triggering procedure similar to the one used by Brooks and Hughes [18].

The evolution of the drag and lift coefficients is shown in Figure 5. After an initial
stabilisation phase, the fluctuations of the forces show a steady pattern (after time step 30000,
approximately), with a reduced frequency St=0.202.

As expected, the drag fluctuates with a reduced frequency that is twice the Strouhal number.
However, it should be pointed out that the peaks on lift do not occur with simultaneous peaks
on drag—a shift of about 108 time steps (i.e. 0.216 units of non-dimensional time) has been
observed between a peak on lift and the first subsequent peak on drag. This phase shift is also
visible in some published results [29,30].

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 897–919 (1999)
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Plate 1. Streamlines and adimensional pressures P/(0.5rU2) in the flow around the cylinder. Upper: fixed situation; lower: Fm=St.
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Plate 2. Streamlines and adimensional pressures P/(0.5rU2) in the flow around the cylinder. Upper: Fm=0.90St; lower: Fm=1.10St.
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Figure 5. Time series of the force coefficients (steady case, Re=200, DtU/D=0.002).

The results obtained by the program ESBFI are shown in Table I along with those reported
by several other authors, including the Wieselsberger’s experimental data as presented by
Roshko [31]. Some scatter may be observed, particularly in the force coefficients, but the
results of ESBFI are acceptable and no significant blockage effects appear to occur (regarding
the value of St, for instance, the empirical formula of Williamson [32] gives St=0.197,
which is close to the result of ESBFI).

6.2. Lock-in under forced 6ibration conditions

If a circular cylinder is forced to oscillate transversely, its behaviour is quite dependent upon
the ratios Y0/D and fm/fs, where Y0 and fm are the (half-)amplitude and frequency of the forced
vibration respectively. If the driving frequency is appreciably different from the Strouhal one
( fs), the fluctuations of the fluid dynamic forces show two main components, as the result of
the interaction between the cylinder motion and the vortex shedding (which occurs with a
frequency fv close to the steady one, fs) [36]. The lock-in is the synchronisation of both
phenomena and occurs over a limited range of driving frequencies close to fs, with this
frequency range being a function of both Re and Y0/D [36,37].

In order to simulate the dependence of lock-in upon the shift between fm and fs, under forced
vibrations with a given amplitude, and to analyse the effects of the driving frequency on some
characteristics of the fluid dynamic forces and wake geometry, four situations with Re=200
and Y0=0.10D but with different reduced mechanical frequencies have been considered,
namely Fm=0.90St, Fm=St, Fm=1.10St and Fm=1.20St.

Table I. Force coefficients and Strouhal number (circular cylinder, Re=200)

Reference CD9DCD 9DCL St

ESBFI 0.2021.39990.049 90.726
Braza et al. [33] 0.201.38 90.77

0.19690.541.2590.03Zhan and Dalton [12]
Franke et al. [34] 1.31 90.65 0.194
Lecointe and Piquet [35] 1.46 0.194

0.19590.601.2990.04Lecointe and Piquet [10]
Wieselsberger (in Roshko [31]) 1.38 0.18
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According to the experimental results of Koopmann [37], the range frequency for occurrence
of lock-in, at Re=200 and Y0=0.10D, is approximately 0.87StBFmB1.13St. It is thus
expected that lock-in occurs in the first three situations, whilst it is not expected to occur in the
last one.

The start-up conditions for all the computations correspond to the situation obtained after
30000 time steps with the cylinder fixed in its uppermost position (i.e. at Y= +Y0), with the
cylinder being released with zero initial velocity. The sinusoidal motion is imposed by assigning
a zero mechanical damping and a high value for the mass parameter rm=m/(rD2), so that the
forces induced by the fluid become irrelevant with respect to the mechanical forces developed
by the spring. Although this is an approximate procedure, it behaves rather well and does not
imply any change in the CFD program. The value rm=1000 proved to be high enough and
the stiffness of the spring was evaluated for each case taking into account the value
St=0.202, which was obtained in the steady situation.

The drag and lift forces obtained in cases Fm=1.10St and 1.20St are shown in Figures 6
and 7, along with the corresponding power spectral densities (abridged as PSD). The
occurrence of lock-in at Fm=1.10St is visible in Figure 6, as CL and CD tend to oscillate
regularly with reduced frequencies Fm and 2Fm, while Figure 7 illustrates that lock-in does not
occur in the case Fm=1.20St. The PSDs obtained at the situations Fm=0.90St and
=1.00St are similar to those of Fm= l.10St [13].

In the case of Fm=1.20St, the main harmonics of the CL fluctuations correspond to the
reduced frequencies Fm=0.242 and Fv:St=0.202, while the spectral contents of the CD

fluctuations spread over a wider range of frequencies—the main reduced frequency is
F1= (Fm−Fv), but some energy may also be attributed to the harmonics with reduced
frequency F2= (Fm+Fv), F3= (2Fv), F4= (2Fv−F1) and F5= (2Fm).

In an experiment with forced oscillations of the form Y(t)=Y0 cos(2pfmt) and with total
duration T, the components of lift that act in phase with the transverse displacement and
velocity may be evaluated by [9]

CLR=
2
T
& T

0

CL(t) cos(2pfmt) dt=
2

(TY0)
& T

0

CL(t)Y(t) dt, (37a)

CLI= −
2
T
& T

0

CL(t) sin(2pfmt) dt=
1

(pTfmY0)
& T

0

CL(t)Y: (t) dt. (37b)

The imaginary component controls the stability of the cylinder—the condition CLI\0
indicates negative fluid dynamic damping and possible self-excited oscillations, with the
cylinder extracting mechanical energy from the flow. This condition is equivalent to 0B8LB
180°, where 8L= tan−1(CLI/CLR) is the angular phase shift between the lift force and the
transverse displacement.

The values obtained in each locked-in case for CLI and for 8L are shown in Table II, along
with the lift amplitude CL0 defined by

CL0= [CLR
2 +CLI

2 ]0.5. (38)

The locked-in situations have negative fluid dynamic damping (CLI\0). The most critical
situation in terms of damping is the one with Fm=St, with the lift force acting almost in
phase with the cylinder velocity (8L=95°:90°) and with the coefficient CLI taking a
maximum value (CLI=0.762). The case Fm=1.10St presents the higher CL0, by virtue of a
significant value for the component of lift in phase with the transverse displacement (CLR).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 897–919 (1999)
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Figure 6. Evolution with time and power spectra of the transverse displacements and force coefficients (Re=200,
DtU/D=0.002, Y0/D=0.10, Fm=1.10St).

With respect to the drag force, the Figure 6 reveals a tendency for a slight increase in the
case of Fm=1.10St with respect to the fixed case (although the drag fluctuations are not yet
fully established at time step 50000). Among the three locked-in situations, the case Fm=St
presented the higher mean value (CD:1.53) and also the higher amplitude of fluctuation of
the drag force [13].

Some similar results have been obtained by other authors—Chilukury [9], for instance,
reports CLI:0.62 for Re=144, Fm=St and Y0/D=0.14, and also indicates, for Re=80 and
Y0/D=0.14, a slight increase in drag for Fm=St (about 12% with respect to the steady case),
while no drag amplification has been attained in other oscillating cases with Fm close to St.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 897–919 (1999)
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Other CFD results are those of Hurlbut et al. [8]—for Re=80 and Y0/D=0.14, the values
[CLI:0.35, 8L:93°] are reported for Fm=St (=0.16), and [CLI:0.10, 8L:157°] for
Fm=0.875St (=0.14). These values agree with the experimental ones obtained by Tanida et
al. [36] for the same Re (=80). However, the drag amplification observed by Tanida et al. in
locked-in conditions is higher than the one obtained via CFD [8,9].

The results obtained by the authors also indicate that both the mean drag and the imaginary
component of the lift coefficient attain maximum values at Fm=St. The values obtained in
this situation for the drag amplification and for the phase shift between lift and motion are
similar to the CFD results reported by Hurlbut et al. [8] and by Chilukuri [9].

Figure 7. Evolution with time and power spectra of the transverse displacements and force coefficients (Re=200,
DtU/D=0.002, Y0/D=0.10, Fm=1.20St).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 897–919 (1999)
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Table II. Properties of the lift force in the locked-in situations

Fm=0.90St Fm=St Fm=1.10St

0.193CLI 0.762 0.481
0.402 0.765CL0 1.293

151 958L (°) 22

In order to investigate the influence of the driving frequency on the spacing of the vortices
in the wake at locked-in conditions, and to compare it with the fixed situation, the streamlines
and the fluid pressures obtained near the cylinder at an instant of maximum upwards lift in the
fixed case and at instants of uppermost position in the oscillating cases are plotted in Plates 1
and 2. This instant is identified by a small dot in Figure 6 for the case Fm=1.10St.

The pressure scales in the plates vary from case to case, but always range from dark red
(higher pressures) to dark blue (lower ones). The blue zones in the downstream wake of the
cylinder correspond to the instantaneous location of the shed vortices.

The following conclusions may be drawn from this figure:

� The longitudinal and lateral spacing between the vortices in the wake are similar in the
fixed situation and in the case of Fm=St. The experimental results obtained by Koop-
mann [37] and Griffin et al. [38] for similar Re illustrate this property for the longitudinal
spacing but also report a slight decrease in the lateral spacing, which is not visible in the
CFD results;

� The downstream wake in the case of Fm=0.90St is more regular than in the case of
Fm=1.10St, which was also experimentally observed [37,38];

� The longitudinal vortex spacing varies inversely with the vibration frequency; the lateral
spacing changes little with this parameter, but a slight tendency to decrease for frequencies
lower than the Strouhal one may be noticed. These properties are in agreement with the
experimental results [37,38].

7. EXAMPLE 2: RECTANGULAR CYLINDER AT Re=500

The flow around a rectangular section with a side ratio B/D=4 at a Reynolds number of 500
(based on height D, i.e. Re=UD/n) was analysed for both fixed and oscillating conditions.
This section was chosen because it enables the illustration of the CFD potential in the
assessment of aerodynamic stability of structures.

In fact, wind tunnel tests reveal that this section is prone to torsional flutter, which is a
phenomenon often encountered in testing bridge decks. The value of Re=500 was adopted
because it is attainable (with program ESBFI and with the hardware available) with a
reasonable computer runtime and because there exist in the literature several CFD analysis of
this section at such Re and for fixed conditions (Okajima [23] and Okajima et al. [39,40]).

The finite element mesh used in this study is shown in Figure 8. It contains 18528 nodes and
4532 elements, and the Lagrangian region is a rectangle (8D per 4D) centred with the cylinder
at rest. The elements that touch the cylinder have a dimension normal to the surface equal to
0.025D and a tangential dimension varying between 0.025D at the corners and 0.12D at the
middle of each side. The CPU time per step (on an IBM-RISC 6000/595) was 0.65s/1.47s in the
simulation of fixed and of oscillating conditions respectively.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 897–919 (1999)
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Figure 8. Layout of the finite element mesh.

7.1. Fixed conditions

The flow was first analysed for fixed conditions, with the occurrence of vortex shedding
being hastened by the perturbation technique referred to above. The evolution of the drag, lift
and moment coefficients is shown in Figure 9. After an initial stabilisation phase, these force
coefficients oscillate regularly as a result of alternate vortex shedding.

The values obtained for the average CD, for the (half-)amplitude of CL and for St are
shown in Table III along with the CFD results reported by Okajima [23] for the same Re
(these values of CD and of DCL are only approximate, as they were taken from figures; besides,
the value DCL:1.85 attributed to Okajima [23] is half of the peak-to-peak amplitude of the
lift fluctuations presented therein, which are rather regular but do not present zero mean).

The distribution of the flow velocities in the vicinity of the rectangular section at an instant
with maximum upwards lift, at the first instant of zero lift that occurs afterwards and at the
following instant with maximum downwards lift are shown in Figure 10. These selected
instants are the ones marked with a dark square in Figure 9. Clearly visible are the

Figure 9. Evolution with time of the force coefficients (Re=500, DtU/D=0.00244).
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Table III. Force coefficients and Strouhal number (rectangular section, B/D=
4, Re=500)

Reference CD DCL St

1.364 92.00ESBFI 0.149
Okajima [23] 1.35 91.85 0.13

reattachment on the lateral sides of the separation surface that is created at the frontal corners,
as well as the vortices near the rear corners and in the wake. The flow patterns shown in
Figure 10 are similar to those presented by Okajima [23] and by Okajima et al. [39,40].

7.2. E6aluation of flutter deri6ati6es

As mentioned by Nakamura and Yoshimura [41], the onset of torsional flutter at high flow
speeds is related to the reattachment of the shear layers separated at the leading edge and to
its interaction with the structural motion (fluid memory effect). Rectangular sections with ratio
B/D less than 2.5 or greater than 5.5 are not prone to torsional flutter, the former because the

Figure 10. Velocity field near the section in the fixed situation (Re=UD/n=500).
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flow is fully separated along the lateral sides (which makes them more sensible to galloping)
and the latter because the separation bubbles near the leading edge corners are too short to
affect strongly the way how the pressure field on the cylinder surface adapts to changes of
position due to the rigid body motion.

Wind tunnel tests on a rectangular section with B/D=4 indicate that the aerodynamic
torsional damping becomes negative for reduced flow speeds, U*=U/( fmB), greater than
about 4 (Nakamura et al. [41], Washizu et al. [42], Nakamura [43], Huston [44]).

These wind tunnel tests were performed at Re:104–105, which is a value not attainable
with the program ESBFI and the hardware available. However, the analysis of the fluid–struc-
ture interaction at the same Re that was considered in the steady case, namely Re=500, can
be performed with a reasonable computational effort (the evaluation of 70000 steps under
oscillating conditions, such as was performed for case U*=8, takes 29 h of CPU in the
computer referred to above). The CFD results shown in the following illustrate the dependence
of stability upon U* at Re=500 with emphasis on the torsional behaviour—the torsional
oscillations were studied for U*=3, 5, 6 and 8, while the transverse oscillations were studied
only for U*=3 and 8.

Sections with sharp corners are less sensitive to Re effects than, for instance, circular
sections. Based on wind tunnel tests of this rectangular section at Re much higher than 500,
Washizu et al. [45] report the values CD:1.20 and St:0.13, which are close to the CFD
results at Re:500. Thus, if in fact the Re effects are not pronounced, it is expected that the
CFD analyses at Re:500 also reveal a stable behaviour in torsion at U*=3 and unstable at
U*=8. With respect to the transverse oscillations, stable conditions are expected to occur for
the range of U* considered (35U*58), since this section is not prone to galloping at such
flow speeds [45,46]. In fact, if the value St=0.149 is considered (vd. Table III), the reduced
Strouhal flow speed may be estimated as U s*=U/( fsB)=D/(BSt):1.68, which is below the
range of U* considered in the CFD analysis.

The flutter derivatives associated with flutter on a single degree of freedom (H1* and A2*)
were evaluated by a CFD simulation of the FOM. The torsional and transverse oscillations
were studied in separate, with the longitudinal motion being fixed. All the computations were
carried out with zero structural damping, with the body motion starting after 30000 time steps
with the cylinder fixed on its initial position (Y0 or a0).

The initial amplitude of each motion is equal for every U*, namely a0=1.8° and Y0=
0.16D. These values are similar to those adopted in wind tunnel tests (for instance, Nakamura
and Yoshimura [41], Nakamura and Mizota [46]). As the structural damping is zero on the
CFD experiments, the observed effective damping is equal to the aerodynamic one and the
flutter derivatives are simply obtained by

H1*= −
m

rB2

2dEy

p
, A2*= −

I
rB4

2dEa

p
, (39)

where dE (:2p ·jE) is the average logarithmic decrement of the oscillations. As the flutter
derivatives do not depend on the mass parameters rm=m/(rB2) and rI=I/(rB4), these
equations show that the effective damping is inversely proportional to them. Thus, it is
convenient to consider low values of these parameters in the CFD experiments, in order to
extract meaningful results with few cycles of oscillation (i.e. with less demand of CPU).

The evolution of the displacements and of the forces is shown in Figures 11 and 12 for
U*=3 and for U*=8. Regarding the transverse oscillations, stable conditions have been
obtained in both cases. With respect to the torsional oscillations, case U*=3 is stable and case
U*=8 is unstable, with growing amplitudes revealing the occurrence of torsional flutter. This
behaviour is similar to the one observed in the wind tunnel tests.
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Figure 11. Evolution of rotation and of moment coefficient (a0=1.8°, DtU/D=0.00244).

The results obtained for the flutter derivatives (H1* and A2*) are presented in Table IV. The
positive values indicate unstable conditions. Figure 13 illustrates the values of A2* obtained via
CFD and those reported by Huston [44] and by Nakamura and Yoshimura [41] based on wind
tunnel experiments under free oscillation conditions and smooth flow (these experimental
values are approximate, since they were extracted from figures). Some scatter may be observed,
even between the wind tunnel results themselves, but the CFD results are on the trend.

With respect to the transverse oscillations, Shangpei and Xin [47] have performed tests under
free oscillation conditions and report H1* (U*=3):−1.0 and H1* (U*=8):−5.0 for a
section not exactly rectangular but rather trapezoidal with Bupper/D=4 and Blower/D=3.33. As
for the torsional case, the results obtained via CFD for the transverse oscillations agree with
what might be expected, as they reveal stable conditions for both values of U* and this
characteristic becomes more pronounced for U*=8.
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8. CONCLUSIONS

The ALE description has been successfully incorporated in a well-known two-step projection
scheme for the resolution of NS equations. The occurrence of lock-in is investigated for a
circular cylinder at Re=200, under forced transverse vibrations with a peak-to-peak ampli-
tude equal to 20% of the diameter. The results illustrate the influence of the driving frequency
at locked-in conditions on some characteristics of the aerodynamic forces and of the wake
geometry, such as the mean drag and lift amplitude, the spacing between the vortices in the
wake and the phase shift lift motion. The behaviour of a rectangular section with a side ratio
B/D=4, at Re=UD/n=500, has also been analysed via CFD. The flutter derivatives H1* and
A2* were evaluated by the FOM for values of the reduced flow speed in the range 35U*58.

Figure 12. Evolution of transverse displacement and of lift coefficient (Y0=0.16D, DtU/D=0.00244).
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Table IV. CFD results for the aerodynamic damping and for the flutter
derivatives

H1*U* A2*

−0.224 −0.1023
5 — 0.175

—6 0.477
−5.6008 1.525

Figure 13. Flutter derivative A2*—experimental and CFD results.

With respect to torsional oscillations, a negative value of the fluid dynamic damping has been
obtained in cases with U*]5. The transverse oscillations have shown stable characteristics for
every U* in the range considered. Despite the low Re considered and the two-dimensional
hypothesis, the results are encouraging in terms of future application of CFD to the design of
wind-sensitive structures, as an auxiliary tool to wind tunnel tests.

APPENDIX A. DEFINITION OF ELEMENTARY MATRICES

At an elementary level (i.e. before the assembling process), the matrices introduced in
Equations (14)–(17) are defined by the following expressions (the sum convention on repeated
indices is used):

Mass matrix: M=
�M1

·
·

M1
n

with M1ij=rdij

&
q

Ni
6 dq,

Viscosity matrix: K=
�K1

·
·

K1
n

with K1ij=m
&

q

(Ni
6

(xk

(Nj
6

(xk

dq,

Gradient matrix: C=
�C1

C2

n
with (Cm)ij=

&
q

(Ni
6

(xm

Nj
p dq (m=1, 2),
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Convextion matrix: S=
�S1

·
·

S1
n

with S1ij=r(umk− ûmk)S2ijmk and

S2ijmk=
&

q

Ni
6Nk
6
(Nj
6

(xm

dq,

Force vector: F=r
&

q

[(N6)Tb] dq+
&

Gt

[(N6)Tt0 ] dG,

Laplacian matrix: Hij=
&

q

�(Ni
p

(x1

(Nj
p

(x1

+
(Ni

p

(x2

(Nj
p

(x2

n
dq,

K*=r
&

q

((N6)T

(xi

AiAj

(N6

(xj

dq, C*=
&

q

((N6)T

(xi

Ai(9Np) dq,

F*=
&

Gt

(N6)T (

(t
�ru1(un− ûn)

ru2(un− ûn)
n

dG, J*=
&

q

((N6)T

(xi

Airb dq.

In these expressions, q is the elementary domain, umk is the mth component of velocity
(m=1, 2) at the kth velocity node of the element (k=1, . . . , 9 for biquadratic interpolation),
un is the normal component of velocity at Gt, b= [b1, b2]T, t0 = [t0 1, t0 2]T and matrices N6, Np store
the interpolation functions for the velocity and pressure fields respectively.

The format presented above presume that the nodal components u1 of velocity are numbered
prior to components u2, and both with the same nodal order.
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